
Remote Sensing of Environment 295 (2023) 113708

Available online 18 July 2023
0034-4257/© 2023 Elsevier Inc. All rights reserved.

S2MetNet: A novel dataset and deep learning benchmark for methane point 
source quantification using Sentinel-2 satellite imagery 

Ali Radman a, Masoud Mahdianpari a,b,*, Daniel J. Varon c, Fariba Mohammadimanesh b 

a Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada 
b C-CORE, St. John's, NL A1B 3X5, Canada 
c School of Engineering and Applied Sciences, Harvard University, Cambridge, United States   

A R T I C L E  I N F O   

Edited by Menghua Wang  

Keywords: 
Methane 
Emission monitoring 
Machine learning 
Remote sensing 
Quantification 
Sentinel-2 
Large Eddy simulation (LES) 

A B S T R A C T   

Methane, as a crucial greenhouse gas, plays a significant role in global warming, contributing to approximately 
one-quarter of the observed climate change since pre-industrial times. Consequently, the detection and quanti-
fication of major methane emitters are vital in addressing this issue effectively. Satellite sensors with shortwave 
infrared (SWIR) spectral bands provide valuable information for monitoring methane emissions. For example, 
Sentinel-2 multispectral data have the capability to detect methane plumes of large point sources. As such, a wide 
range of quantification approaches have been developed to quantify methane source rates based on this dataset. 
Most of the existing methods, however, require auxiliary data, such as wind speed, and have large uncertainties. 
In this study, we introduce a novel approach based on deep learning models to enhance the precision of methane 
quantification using Sentinel-2 data without the reliance on external data sources. To train the proposed deep 
learning model, a comprehensive benchmark dataset has been generated, using Sentinel-2 data. This dataset is 
created by integrating simulated plumes and background noise extracted from real Sentinel-2 images. This 
approach ensures the integration of realistic environmental conditions within the simulated data, enhancing the 
robustness and reliability of our proposed model. The generated benchmark dataset is utilized in different deep 
learning architectures, namely VGG-19, ResNet-50, Inception-v3, DenseNet-121, Swin-T, and EfficientNet-V2L, 
to estimate methane source rate. The performance of deep models has been evaluated in three learning strate-
gies, namely from scratch, transfer-learning, and fine-tuning. The fine-tuned EfficientNet-V2L achieves the 
highest accuracy with root-mean-square error (RMSE), mean absolute percentage error (MAPE), and Pearson R of 
2101 kg h− 1, 10.05%, and 95.70%, respectively. More importantly, the proposed model demonstrates superior 
performance compared to conventional physical-based quantification methods (e.g., integrated mass enhance-
ment) and recently developed deep learning model techniques (e.g., MethaNet). In particular, the proposed 
model exhibits an improvement of approximately 1287 kg h− 1 in terms of RMSE, a 3.92% reduction in MAPE, 
and a 5.01% enhancement in R compared to the IME method. These results highlight the advancements achieved 
by the proposed approach in accurately quantifying methane emissions using Sentinel-2 imagery. The generated 
benchmark dataset and the developed deep learning model presented in this study serve as a fundamental 
resource and constructive framework for future research, promoting extensive implementation across various 
methane monitoring scenarios on different satellites and in distinct geographic regions, which delivering greater 
effectiveness to global methane emission monitoring initiatives.   

1. Introduction 

Methane (CH4) is one of the most important anthropogenic green-
house gases, accounting for 25% of global warming since pre-industrial 
times, second only to carbon dioxide (CO2) (Intergovernmental Panel on 
Climate Change, 2014). Despite having a shorter lifespan (about 9 years) 

than carbon dioxide (>100 years), methane has an 86 times greater 
impact on global warming over a 20-year time horizon (Saunois et al., 
2020; Etminan et al., 2016). This shorter lifespan can be beneficial in 
mitigating climate consequences on a significantly shorter timescale by 
reducing methane emissions (Jongaramrungruang et al., 2022; Montzka 
et al., 2011; Prather et al., 2012; Shindell et al., 2012). Anthropogenic 
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methane emitters including livestock, oil and gas, waste management, 
and coal mining contribute a large fraction of total emissions, with 
wetlands being the dominant natural source. This offers an opportunity 
to reduce methane emissions and mitigate climate change by moni-
toring, identifying, and repairing damaged facilities that cause emis-
sions (Varon et al., 2021). 

Due to the characteristics of methane, it can only be detected with 
specific gas-sensitive sensors (Irakulis-Loitxate et al., 2021). Observa-
tions from satellites equipped with shortwave infrared (SWIR) bands 
have the potential to measure point sources (Jacob et al., 2022). 
Currently, satellites carrying multispectral sensors, including Sentinel-2 
and Landsat-8, offer frequent methane monitoring. Although these 
multispectral sensors were not specifically designed for methane 
monitoring, having methane absorption bands (about 1600 nm and 
2300 nm) enables them to identify point source plumes and measure 
their column enhancement (Varon et al., 2021). Importantly, the higher 
spatial and temporal resolution of Sentinel-2 (i.e., 20 m and about 5 
days) compared to Landsat-8 and -9 (i.e., 30 m and about 8 days) mean 
the data collected is more valuable for the regular monitoring of po-
tential methane point sources (Ehret et al., 2021; Varon et al., 2021). 
However, it is important to note that the capabilities of multispectral 
sensors, including Sentinel-2, are limited to detecting only large point 
sources and not diffuse sources or area methane emissions. Although 
useful in detecting superemitters emitting above a few tons of methane 
per hour, recent studies indicate that super emitters account for only a 
minority of total regional emissions (Omara et al., 2022; Cusworth et al., 
2022). Therefore, to achieve effective quantification and tracking of 
total emissions, more systematic characterization of smaller emission 
sources, including the use of other satellite capabilities, is necessary. 

Several methods have been developed for retrieving point source flux 
rates from plume observations, including gaussian plume inversion 
(Krings et al., 2011, 2013; Rayner et al., 2014; Fioletov et al., 2015; 
Schwandner et al., 2017; Varon et al., 2018), source pixel (Jacob et al., 
2016; Buchwitz et al., 2017; Varon et al., 2018), cross-sectional flux 
(CSF) (Krings et al., 2011, 2013; Frankenberg et al., 2016; Conley et al., 
2016; Varon et al., 2018), and integrated mass enhancement (IME) 
(Frankenberg et al., 2016; Thompson et al., 2016; Varon et al., 2018). 
Even though many methods for plume detection have been developed, 
the measured methane column enhancements and source flux rates are 
subjected to substantial uncertainties due to the varying boundary layer 
conditions, spectral interferences, and the flux inversion's sensitivity to 
complex plume structures (Duren et al., 2019). These current techniques 
require auxiliary data, such as wind speed, when determining flux rate 
estimations, and differences in spatial resolution and acquisition time of 
wind speed data and satellite images further restrict methane flux rate 
accuracy. To address these issues, methane column enhancement and 
flux rate can be determined in a more automated manner using machine 
and deep learning approaches. 

Deep learning methods have shown promising results in several 
remote sensing applications, such as image classification (Memon et al., 
2021; Hosseiny et al., 2022; Huang et al., 2018a), change detection 
(Karim and van Zyl, 2021; Keshk and Yin, 2020), and regression (Zhang 
et al., 2021; Boulila et al., 2021; Radman et al., 2022). The convolutional 
neural network (CNN) is the most prominent of these methods and has 
achieved successful results in various remote sensing applications 
(Mahdianpari et al., 2018; Ansari et al., 2021). Despite the extensive use 
and success of CNNs in several remote sensing and computer science 
applications, their capability for methane quantification has been only 
recently explored (Jongaramrungruang et al., 2022; Kumar et al., 2022; 
Joyce et al., 2022); for example, Jongaramrungruang et al. (2022) used 
a deep CNN model to predict flux rates directly from aerial methane 
plume images, and Joyce et al. (2022) used CNNs to detect and quantify 
methane plumes in PRISMA satellite data. A large dataset of methane 
plume images is required to train machine learning-based algorithms. 
Large Eddy Simulation (LES) (Matheou and Chung, 2014) can be used to 
produce simulated methane plumes at varying flux rates and wind 

speeds (Jongaramrungruang et al., 2022; Varon et al., 2018; Nottrott 
et al., 2014). These simulated plumes can be used in deep-learning 
methods to quantify methane source rates where extensive real world 
plume data are inaccessible. 

Many deep architectures have been successfully used in remote 
sensing regression problems, such as Inception (Szegedy et al., 2015), 
VGG (visual geometry group) (Simonyan and Zisserman, 2015), ResNet 
(residual network) (He et al., 2016), DenseNet (densely connected 
convolutional networks) (Huang et al., 2018b), Swin (shifted window) 
(Liu et al., 2021), and EfficientNet (Tan and Le, 2021). These architec-
tures are potential solutions to addressing methane source rate estima-
tion problems. In this study, we aim to develop a comprehensive 
methane plume benchmark dataset of large point sources of Sentinel-2 
for automatic methane quantification and propose the most efficient 
existing deep architecture for that task. First, the benchmark dataset is 
produced by combining plume data and Sentinel-2 background noise 
data. The plume data are generated using the LES approach with various 
model specifications. Meanwhile, background noise is gathered from 
real Sentinel-2 scenes with an absence of methane plumes. The gener-
ated methane plume benchmark provides a substantial dataset that can 
be useful for methane retrieval and quantification studies, particularly 
when a large dataset is required (e.g., for developing deep learning 
networks). Next, the proposed dataset is used to compare the capability 
of state-of-the-art deep architectures to automatically estimate point 
source quantification rates without using any external auxiliary data. 
The primary contributions of the current study are as follows: (1) 
generating benchmark datasets by simulating methane plumes of 
Sentinel-2 satellite images; (2) designing an end-to-end procedure for 
automatic methane quantification using deep learning-based methods; 
and (3) comparing the potential of existing deep learning methods (e.g., 
VGG, Inception, ResNet, DenseNet, Swin, and EfficientNet) for methane 
quantification to identify the optimal learning strategy. 

2. Methane plume benchmark 

A sufficient volume of data representing a wide range of situations, 
including various point sources and plume conditions, is needed to 
develop and investigate new techniques (i.e., deep learning-based 
methods) for plume monitoring. 

In case of monitoring a certain platform over different timesteps 
(Varon et al., 2021), the real detected plumes may vary, while certain 
criteria associated with these plumes, such as background and albedo, 
remain consistent in most cases. Moreover, constructing a large enough 
benchmark dataset of real cases of plumes to train very deep models is 
challenging. The detection and labeling of real cases require significant 
manual effort, and this process can be costly and time-consuming, as 
expert knowledge is required to identify and label plumes and emitters 
correctly. Furthermore, the accuracy of the labeled data significantly 
impacts the performance of the models, making it essential to ensure 
that the data labeling is consistent and reliable. Additionally, the deep 
learning models trained with detected real cases might be biased to 
those specific cases and may not be suitable for new undetected plumes. 
As a result, using real data to train deep models might not provide 
adequately varying data and could lead to underperformance of deep 
learning models in real-world applications. 

To produce a comprehensive and large methane plume dataset for 
the Sentinel-2 satellite sensor, two main procedures are followed: (1) 
simulating methane plume with characteristics similar to Sentinel-2 
plumes, and (2) generating background noise similar to the real condi-
tions of satellite images. 

Sentinel-2 is a two-satellite multispectral imaging constellation 
developed by the European Space Agency (ESA). The Sentinel-2 mission 
consists of two satellites, Sentinel-2A and Sentinel-2B, launched in June 
2015 and March 2017, respectively. These satellites have sensors with 
13 spectral bands, including 4 visible and near infrared (NIR) bands with 
10 m resolution, 6 red-edge and SWIR bands with 20 m resolution, and 3 
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atmospheric bands with 60 m resolution. Sentinel-2 has a 290 km swath 
width and a revisit time of 5 days at the equator, allowing for frequent 
data acquisition of a particular area. 

2.1. Methane plume simulation 

In order to generate methane plume data, Large Eddy Simulations 
(LES) were performed using Weather Research and Forecasting (WRF) 
software version 3.8 (WRF Users’ Guide, 2023; Skamarock et al., 2008). 
This technique produces three-dimensional (3D) methane distributions, 
emanating from a point source in the boundary layer over time, with 
various parameters (e.g., wind speed, heat flux). Detailed procedures 
and settings of this method are explained in several articles, including 
Nottrott et al. (2014), Jongaramrungruang et al. (2019), and Matheou 
and Bowman (2016). 

Table 1 provides a summary of some of the key configuration settings 
utilized for WRF-LES simulation. The passive scalar was used for at-
mospheric boundary layer (ABL) dispersion simulations by setting the 
value of the tracer option (“tracer_opt”) (Nottrott et al., 2014). The 
passive tracers are influenced by the model rather than actively 
participating in the simulation (Blaylock et al., 2017). The LES boundary 
layer is incorporated with a specified surface heat flux (by setting “isfflx 
= 2”). The surface momentum fluxes are estimated using Mon-
in–Obukhov similarity theory, by modifying the “sf_sfclay_physics” 
parameter in the WRF configuration. This incorporates full diffusion for 
vertical mixing, utilizing the “diff_opt = 2” and “km_opt = 3” settings. 
The “periodic_x” and “periodic_y” parameters enable periodic lateral 
boundary conditions (Nottrott et al., 2014). 

In this study, an initially uniform wind in the x direction is consid-
ered over each simulation in the WRF-LES. Wind speed is the main 
parameter affecting vertically integrated plume conditions owing to its 
impact on atmospheric turbulence dynamics (Varon et al., 2018; Jon-
garamrungruang et al., 2019). Accordingly, we perform 10 simulations 
with varied wind speeds ranging from 1 to 10 m s− 1. While other factors 
such as surface sensible and latent heat flux can influence the dynamic 
and stability of methane plumes, only variations in wind speed are 
considered in the simulations. This is due to the fact that the simulated 
plumes are presented as column enhancement in pixels of images and 
various plume shapes can be simulated with constant heat fluxes. This 
approach is consistent with previous studies in the field, which also 
employed constant latent and sensible heat flux values to simulate 
methane plumes (Varon et al., 2018; Sánchez-García et al., 2022; 
Gorroño et al., 2023). Accordingly, uniform latent and sensible heat flux 
of 40 and 400 W m2 are considered normal conditions for all simula-
tions, similar to Jongaramrungruang et al. (2022). Each simulation 
consists of 1060 scenes captured at 10 s intervals. The simulated scenes 
of the first hour (360 scenes) are considered as spin-up and the 
remaining 700 scenes are used for methane plume generation. 

The geometrical parameters are set using Sentinel-2 data. A spatial 
resolution of 20 m over a 2 × 2 km domain is considered with one-way 
nesting from external simulation with 100 m resolution and 3 × 3 km 
domain. Next, the methane plume from a 2 × 2 pixel (40 × 40 m) point 

source is generated using the passive tracer transport capability in WRF- 
LES (Varon et al., 2018; Nottrott et al., 2014; Nunalee et al., 2014). 
Then, 7000 scenes of plumes are produced by integrating the vertical 
field columns for the ensemble of 10 simulations. 

The generated plume scenes represent a wide range of methane point 
source plumes that can be captured by Sentinel-2. However, WRF-LES 
produces a constant source rate over all the ensemble of simulations 
which leads to constant quantification rate. To address this issue and 
obtain the desired source rates, the initial simulations are scaled and 
resampled. This scaling process does not impact the sensitivity of the 
simulations (Sánchez-García et al., 2022). Accordingly, the produced 
scenes are randomly scaled into the range of 5000–30,000 kg h− 1. This 
range is selected based on the previously documented point sources 
observed by Sentinel-2. Large point sources up to 50,000 kg h− 1 have 
previously been documented with Sentinel-2 (Varon et al., 2021), and 
also down to 1500 kg h− 1 (Sherwin et al., 2022), so we select 
5000–30,000 kg h− 1 as a feasible detection range for Sentinel-2. 

The last step to modify plume scenes regarding the Sentinel-2 ca-
pacity is to mask pixels with a methane column below Sentinel-2 mea-
surement precision. Varon et al. (2021) obtained precision of 0.31 mol 
m− 2 for the most common methane retrieval approach, known as Multi- 
Band-Single-Pass (MBSP), while this amount was 0.13 mol m− 2 for 
Multi-band-multi-pass (MBMP) technique. We utilize MBMP technique 
for both the base threshold and generating background noise (Section 
2.2). Samples of simulated methane plumes at different time steps for 
various wind speeds at constant source rate of 10,000 kg h− 1 are rep-
resented in Fig. 1. 

2.2. Sentinel-2 background noise 

To produce a realistic benchmark of Sentinel-2 methane plumes, 
reconstructing specifications of the real plume images including back-
ground noise is necessary, as methane quantification approaches are 
highly affected by this noise (Gorroño et al., 2023). One way to produce 
this noise is using gaussian random noise which simulates systematic 
sensor noise with normal distribution. The background noise, however, 
in addition to systematic noise, has a high correlation with surface ob-
jects that are not distributed normally. The other strategy to reconstruct 
background noise is obtaining it from real Sentinel-2 scenes with an 
absence of methane plumes. 

The real Sentinel-2 scenes are derived from regions around a selec-
tion of known sites with high methane emissions over the past few years. 
This includes oil and gas production regions in Algeria, Turkmenistan, 
and the United States (see Fig. 2), which have been amply documented 
in previous studies (Ehret et al., 2021; Varon et al., 2021; Sánchez- 
García et al., 2022). The characteristics of the collected data over these 
regions are presented in Table 2. 

2.2.1. Methane retrieval 
Thus far, several approaches have been developed to retrieve 

methane concentration enhancement from multispectral sensors 
including Sentinel-2. The MBMP method provides more precise results 
compared to single pass techniques such as MBSP (Varon et al., 2021; Z. 
Zhang et al., 2022). In the current study, the MBMP technique is used to 
obtain methane enhancements from Sentinel-2 SWIR bands (bands 12 
and 11). This technique subtracts column enhancement of a reference 
scene (non-active point source) from the main scene (active point 
source) for methane retrieval. Methane column concentration (ΔXCH4) 
for each single scene is determined using the following relation 
(Sánchez-García et al., 2022): 

ΔXCH4 = − log(T)/(AMF.σCH4) (1) 

Where T (transmittance) is the band ratio of the strong methane 
absorption band (band 12) to the methane-free band (band 11) radiance. 
AMF is airmass factor that is determined by slant optical path and is a 
function of angular condition. σCH4 is methane absorption cross-section. 

Table 1 
WRF-LES key configuration setting.  

Option Setting Value 

Tracer option Add passive tracer tracer_opt = 2 
Surface heat and moisture 

fluxes 
Specified surface heat flux issflx = 2 

Surface layer option Revised Monin-Obukhov 
scheme 

sf_sfclay_physics =
1 

Turbulence and mixing Full diffusion: mixing in 
physical space 

diff_opt = 2 

Eddy coefficient 1.5 order TKE closure (3D) km_opt = 2 
Lateral boundary 

condition 
Periodic lateral boundary 
condition 

periodic_x = true 
periodic_y = true  
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2.2.2. Post-processing 
The retrieved methane column concentration data are then clipped 

into 2 × 2 km scenes (similar to real plume images). These scenes are 
passed through filters to eliminate potential point sources and plumes 
from the background noise dataset. Accordingly, the top 5% scenes 
(with an average methane column exceeding 1.65 standard deviation 
above the mean of all background scene concentrations) are considered 
as potent plume images and excluded from the background noise data-
set. Finally, 31,012 Sentinel-2 background methane scenes are extracted 

from three of the largest methane point source sites. Examples of these 
background noise scenes are presented in Fig. 3. 

2.3. Data augmentation 

To imitate real plume images, we combine augmented WRF-LES 
plumes and Sentinel-2 background noise images. 10 augmentations, 
including random source rate scales (to reach quantification in range of 
5000 to 30,000 kg h− 1), random rotations (in range of − 180 to 180 
degree), and random shifts in source location (between − 5 and 5 pixels 
in each direction), are applied to each of the initial plume scenes. This 
augmentation produces 70,000 simulated plume images. The modified 
Sentinel-2 MBMP images, on the other hand, are randomly rotated (at 
multiples of 90 degrees) to establish background images for the plumes. 
As such, the benchmark dataset of Sentinel-2 methane plume images is 
produced by integrating the augmented plume scenes and real back-
ground data (Fig. 4). 

2.4. Benchmark data analysis 

Various sources of error can affect the detection of methane plumes 

Fig. 1. Simulated methane plume samples at different time steps with varied wind speeds ranging from 1 to 10 m s− 1.  

Fig. 2. Locations of large methane emission sites obtained for deriving background noise from the existing literature: (a) Permian oil and gas field in USA, (b) Hassi 
Messaoud oil field in Algeria, and Korpezhe oil and gas field in Turkmenistan. 

Table 2 
The region and date of acquired Sentinel-2 data used for generating background 
noise images.  

Country Site Date Sensor 

Turkmenistan Hassi Messaoud oil field 2022-07-13 Sentinel-2 
2021-07-18 

Algeria Korpezhe oil and gas field 2022-07-12 
2021-07-07 

USA Permian oil and gas field 2022-06-14 
2021-06-19  
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Fig. 3. Samples of extracted Sentinel-2 background noise images from Turkmenistan (first row), Algeria (second row), and USA (third row) sites.  

Fig. 4. Samples of produced methane point source scenes, generated by integrating the augmented plume scenes and real background data.  

Fig. 5. Instances of produced Sentinel-2 methane concentration benchmark scenes with high background noises, broken and mixed plumes (top), and their cor-
responding simulated plume scenes (bottom). 
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and their backgrounds, including clouds, measurement precision errors, 
high-albedo surfaces, the presence of aerosols, and other retrieval errors. 

The identification of methane plumes is significantly influenced by 
the presence of clouds in satellite imagery. In order to achieve accurate 
methane detection and monitoring, cloud-free images are favorable and 
provide valuable information (Pandey et al., 2019; Varon et al., 2021; 
Joyce et al., 2022). Accordingly, to generate accurate background im-
ages, we implemented a filtering process that excluded scenes contain-
ing clouds, and only utilized cloud-free observations. 

To simulate real plume conditions and consider the capabilities of 
the Sentinel-2 sensor for methane detection, pixels with methane con-
centrations lower than the Sentinel-2 measurement precision were dis-
carded. This low concentration removal resulted in the simulation of 
broken plume conditions. 

Although aerosol impact is generally insignificant in in Sentinel-2 
satellite images of methane plumes (Varon et al., 2021), the slight im-
pacts of aerosols on the background noise were considered by using real 
Sentinel-2 scenes for background images. Additionally, different back-
ground conditions, such as high surface albedo, were applied to the 
benchmark datasets using real background scenes. 

Some instances of broken and mixed plumes with high background 
noises in the produced benchmark dataset are displayed in Fig. 5 and 
compared with the simulated full methane plume. The background noise 
may be attributed to various factors, including surface albedo artifacts 
and retrieval errors. 

3. Deep learning 

Deep neural networks (DNN) contain multiple processing layers with 
learnable weights which help them extract input data features and 
achieve high performance in many remote sensing and computer vision 
applications. The learnable weights are trained and optimized using the 
benchmark dataset in an iterative process namely backpropagation al-
gorithm. This process typically requires a large set of data as the model 
parameters (weights) increase. 

Several pioneering architectures have been developed and success-
fully utilized in computer vision tasks over the past few years. Most of 
these well-known models have been trained and evaluated using large 
famous benchmark datasets such as ImageNet (Russakovsky et al., 
2015). These deep models are usually transferable to other applications 
in a new domain that uses similar visual features. Accordingly, the 
models can achieve an acceptable performance even with small training 
sets by using transferred weights. To achieve a more efficient perfor-
mance in training stage, we obtained ImageNet weights in different 
learning strategies and compared them to the learning from scratch 
approach. 

In the current study, some well-known deep learning architectures in 
computer vision as well as remote sensing, including VGG, Inception, 
ResNet, DenseNet, Swin, and EfficientNet are used. The VGG network 
(Simonyan and Zisserman, 2015) achieved significant performance in 
the ImageNet Large Scale Visual Recognition Competition (ILSVRC) 
2014 for localization and classification tracks by using small 3 × 3 
convolutional filters. VGG-16 was one of the most successful VGG 
structures that used 13 convolutional layers followed by 3 fully con-
nected layers. The network reached a significant improvement by 
increasing the depth of convolutional layers to 16 in the VGG-19 
network. The effective performance of this network indicated the po-
tential of depth factor in deep structures. 

Inception or GoogLeNet (Szegedy et al., 2015) incorporates Incep-
tion modules that are comprised of convolutional layers in a parallel 
manner. This results in a deep structure in both depth and width, while 
computational complexity does not increase. In comparison to conven-
tional CNNs, such as the VGG network, the 42-layer Inception-v3 has 
fewer parameters. This increases the efficiency of the Inception model to 
learn complex features under minimal computing constraints. 

Microsoft's Residual Networks (ResNet) (He et al., 2016) was the 

winner of ILSVRC in 2015 for the classification task (Russakovsky et al., 
2015). In this network, a residual learning module is implemented, 
which results in a very deep network. The residual module addresses 
problems associated with very deep models, including vanishing 
gradient problems, by adding identity connections. Thus, ResNet can be 
tuned with less complexity while using a deeper architecture compared 
to VGG. 

In DenseNet architecture (Huang et al., 2018b), all layers are con-
nected in the feed-forward fashion to address the vanishing gradient 
problem of very deep networks. Meanwhile, the number of network 
parameters is reduced, which improves efficiency of the network. 
Increasing the number of layers, even to more than a hundred, does not 
cause optimization difficulty. The 121-layer DenseNet performs suc-
cessfully even with small training sets without overfitting owing to its all 
connected layers feature. 

Recently, transformer-based models have demonstrated exceptional 
performance in natural language processing (NLP), and their applica-
tions have also extended to the computer vision domain. One such 
model, the shifted windows (Swin) transformer (Liu et al., 2021), uti-
lizes a sliding window approach to extract both global and local features. 
This technique enables the extraction of long-distance and local infor-
mation simultaneously. The Swin architecture comprises a Patch Parti-
tion module and four cascaded stages containing Swin transformer 
blocks. Each two Swin transformer blocks in the cascade consists of 
multi-head self-attention modules with both regular and shifted win-
dowing configurations to enable global attention computation. 

EfficientNets (Tan and Le, 2020, 2021) represent a new family of 
CNNs that offer improved training efficiency by reducing the number of 
trainable parameters and thereby minimizing training time. These 
models are designed using training-aware neural architecture search 
(NAS) and scaling to optimize the trade-off between training speed and 
parameter efficiency. EfficientNet incorporates ordinary convolutional 
layers and mobile inverted bottleneck convolutions (MBconv) modules. 
EfficientNetV2 (Tan and Le, 2021) utilizes fused mobile inverted 
bottleneck convolution (Fused-MBconv) and MBcov structures with 
smaller expansion ratios to reduce memory usage. In EfficientNetV2, the 
fused MBconv module is primarily utilized in the shallow layers of the 
network. Furthermore, the network width, depth, and input resolution 
are all simultaneously increased to enhance network performance. 

3.1. Experiment setup 

To estimate methane source rate, the deep learning architectures are 
utilized and trained with our methane plume benchmark dataset. 
Accordingly, VGG-19, Inception-v3, ResNet-50, DenseNet-121, the tiny 
version of Swin (Swin-T), and large version 2 of EfficentNet (Effi-
cientNet-V2L) are deployed and modified for our purpose as a regression 
task. The deployed models are generally developed for classification 
task. To modify these architectures for the current study, the last fully 
connected layer and its following activation function are replaced by our 
case sensitive top layers (Table 3). This includes a flatten layer to pass 
base model output to a fully connected layer with 256 units. It is fol-
lowed by a dropout with a rate of 0.5 to avoid overfitting. The last 
modified fully connected layer with its linear activation function esti-
mates methane source rate. 

We used 35,000 samples (50%) of the benchmark data for training, 
14,000 for validation (20%), and the remaining 21,000 samples (30%) 
for testing the models. The models are trained with a learning rate of 

Table 3 
Modified top layers.  

Layer 1 Flatten 
Layer 2 Dense (256, activation function: ReLu) 
Layer 3 Dropout (0.5) 
Layer 4 Dense (1, activation function: linear)  
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10− 4 using Adam optimizer over 50 epochs. For the learning stage, three 
different strategies are considered:  

- Learning from scratch: This is the conventional learning process 
where the initial weights are set randomly, and the weights are 
adjusted during the training process to minimize the loss function.  

- Transfer learning: This approach involves a pre-trained model in 
another domain or dataset. The pre-trained model's weights are 
transferred to the new domain, while they are fixed and not adjusted 
during the training process. The idea is to leverage the pre-trained 
model's learned features. This can be beneficial when the new 
dataset is small or when there are limited computing resources to 
train a model from scratch.  

- Transfer learning with fine-tuning: This strategy is similar to transfer 
learning, when the transferred weights from another domain are 
used as initial weights, but they are tuned during the training stage 
by adjusting weights based on the new dataset features. Fine-tuning 
can lead to better performance compared to transfer learning when 
the new dataset is related to the pre-trained model's domain, and the 
new dataset is large enough to update the weights effectively. 

In summary, learning from scratch involves random initialization of 
weights, transfer learning uses pre-trained model weights without 
adjusting weights, and transfer learning with fine-tuning initializes 
weights with pre-trained model weights and adjusts them during 
training. In the current study, the transfer learning strategies use 
weights obtained from the ImageNet dataset. 

4. Experimental results 

Performance of the deep learning architectures for methane source 
rate quantification are compared using the test dataset in terms of root 
mean square error (RMSE), mean absolute percentage error (MAPE), 
and Pearson correlation coefficient (R) (see Table 4). As mentioned 
earlier, three learning strategies, namely learning from-scratch, transfer 
learning, and transfer learning with fine-tuning, are examined for each 
network. The best result within each learning strategy in terms of 
evaluation metrics is highlighted in bold in Table 4. 

Fig. 6 compares predicted methane source rates obtained from the 
fine-tuned models (for the testing dataset), as the best performing 
strategy, to the true source rates. EfficientNet-V2L (Fig. 6 (f)) has the 
tightest scatter plot, while Inception-v3 is sparse (Fig. 6 (c)). This agrees 
with the reported accuracies of the examined deep learning networks in 
Table 4. 

4.1. Comparison with existing methane quantification techniques 

In this section, the fine-tuned EfficientNet-V2L, the best model with 
the highest accuracy among all proposed approaches, is compared with 
state-of-the-art techniques for methane flux rate quantification. The 
most commonly used quantification method is IME, which has been 
extensively used in many studies and various satellite datasets including 
Sentinel-2 (Varon et al., 2021; Ehret et al., 2021). This technique is the 

best adaptation for source rate estimation among the existing physical 
methane quantification approaches (Varon et al., 2018). This technique 
requires auxiliary data for wind speed. Here, we exploit the IME in a 
similar setting as presented in Varon et al., 2021. For further compari-
son, we also deploy the MethaNet architecture proposed by Jongar-
amrungruang et al., 2022. MethaNet provides an alternative approach to 
quantify methane flux rate from AVIRIS-NG (Airborne Visible Infrared 
Imaging Spectrometer - Next Generation) aerial observations without 
requiring auxiliary data (e.g., wind speed) using a DCNN that was 
developed specifically for methane quantification. The MethaNet con-
tains four convolutional layers, max-pooling layers, a dropout, two fully- 
connected (FC) layers, and an output FC layer for flux rate estimation. 

The Sentinel-2 methane plume benchmark dataset produced in this 
study is used for methane quantification using these state-of-the-art 
methods (i.e., IME and MethaNet). Their estimated flux rates are 
compared to the true values in Fig. 7. 

Table 5 compares the accuracy of state-of-the-art methods to the best 
result reported in Table 4. The IME and MethaNet accuracies are very 
close, where IME has better MAPE and R, while MethaNet has a slightly 
more accurate RMSE. The proposed approach, based on fine-tuned 
EfficientNet-V2L, outperforms both existing methods in terms of all 
evaluation indices. In particular, the proposed model exhibits an 
improvement of approximately 1287 kg h− 1 in terms of RMSE, a 3.92% 
reduction in MAPE, and a 5.01% enhancement in R compared to the IME 
method. 

4.2. Effect of sampling ratio 

To evaluate whether the amount of plume scenes in the generated 
benchmark dataset is enough to train deep learning models, we analyze 
the performance of fine-tuned EfficientNet-V2L (the best among utilized 
architectures) with varying sampling ratios ranging from 1% of the 
dataset (700 samples) to 90% (63,000 samples). Performance of the 
models are evaluated using the same unseen portion of the benchmark 
dataset (10% or 7000 samples) for validation. The effect of using 
different sampling ratios based on statistical factors of RMSE and R is 
compared in Fig. 8. By increasing the training ratio from 1% to 5%, the 
model's performance improves sharply, by >400 kg h− 1 in RMSE and 2% 
in R. The experiment shows that using only 5% of the benchmark dataset 
for training of the proposed deep model (EfficientNet-V2L) results in 
higher accuracy when compared to IME and MethaNet with 50% of the 
dataset. When using >10% of the training dataset, the network perfor-
mance is almost stable and the changes in accuracy parameters are 
insignificant (e.g., <150 kg h− 1 RMSE and 1% R improvement by 
increasing sample ratio from 10% to 20%). The variation in evaluation 
factors are negligible for training ratios exceeding 50%. For example, a 
change in the sampling ratio from 50% to 60% results in a 0.2% increase 
in R and approximately a 36 kg h− 1 drop in RMSE. 

This experiment confirms that the methane plume benchmark 
dataset developed in this study is suitable for Sentinel-2-based methane 
monitoring studies. 

Table 4 
Performance of deep learning architectures for methane source rate estimation using the testing dataset.  

Method From-scratch Transfer Fine-tuning 

RMSE MAPE R RMSE MAPE R RMSE MAPE R 

(kg h-1) (%) (%) (kg h-1) (%) (%) (kg h-1) (%) (%) 

VGG-19 2639 12.81 93.14 3653 17.30 86.40 2206 10.51 95.24 
ResNet-50 3086 14.42 90.44 3522 17.07 87.34 2659 12.69 93.08 
Inception-v3 2829 13.38 92.05 4990 25.11 73.01 2784 13.50 92.41 
DenseNet-121 2681 13.12 93.07 4148 20.16 81.94 2383 11.19 94.48 
Swin-T 3137 14.96 90.03 4930 22.14 75.57 2678 12.56 92.86 
EfficientNet-V2L 3027 14.47 90.96 3917 18.20 84.19 2101 10.05 95.70  
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Fig. 6. Scatter plots presenting relationship of predicted and real values of methane source rate obtained from (a) VGG-19, (b) ResNet-50, (c) Inception-v3, (d) 
DenseNet-121, (e) Swin-T, and (f) EfficientNet-V2L. 
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4.3. Evaluation using real cases 

We estimated the source rates of 27 real plumes in Sentinel-2 scenes 
for four locations over the Permian Basin, Hassi Messaoud, and Kor-
pezhe (two locations), to assess the practical value of the proposed 
method. Methane column enhancement images over these 27 samples 
are presented in Fig. 9. 

The proposed method results are validated by comparing them to 
IME quantifications, using the approach of Varon et al. (2021). The 
plume area is manually adjusted by removing background noise to 
obtain more precise validation results using IME. Meanwhile, the plume 
scenes remain intact to be fed to the EfficientNet-V2L model for a more 
realistic assessment. The plumes and their corresponding estimated 
source rates with the IME and proposed approach (with fine-tuned 

EfficientNet-V2L model) for one sample at each location are depicted 
in Fig. 10. The estimated source rates using the IME method and 
EfficientNet-V2L (fine-tuned) are noticeably close. This slight difference 
between EfficientNet-V2L (fine-tuned) and IME indicates capability of 
the proposed method to quantify methane source rates for real Sentinel- 
2 cases. 

To further evaluate performance of the proposed model, it is cross 
validated with the IME results. The predicted source rates of the pro-
posed model are compared to the IME results in scatter plot (Fig. 11). 
The estimated source rates using the IME method and EfficientNet-V2L 
(fine-tuned) are in agreement and indicate root mean square deviation 
(RMSD), mean absolute percentage deviation (MAPD), and Pearson R of 
515.86 kg h− 1, 6.0%, and 96.75%, respectively. 

5. Discussion 

The results demonstrate the efficacy of deep learning architectures 
for methane source rate quantification. This discussion section provides 
an analysis of the potential of the employed deep learning models, a 
comparison of the best performing deep learning approach to existing 
methods, a discussion of the limitations and restrictions of the proposed 
method, and an exploration of the applicability of the proposed method 
for other satellites. 

5.1. Proposed method performance analysis 

Quantitative comparison of learning strategies indicates a superior 
performance of fine-tuning approaches compared to the other ap-
proaches examined in this study. However, the learning from-scratch 
strategy also results in acceptable estimation (above 90% R) when 
compared to the fine-tuning strategy. The transfer learning strategy, in 
which all weights of the base model are frozen, demonstrates the poorest 
performance among all. This transfer learning could be more beneficial 
when insufficient training data is available. The benchmark plume 
dataset, produced in this study, however, offers an enriched dataset, 
which is of great benefit during the training stage and produces accurate 
results even when the models are trained from-scratch. Accordingly, 
compared to the transfer approaches with frozen base models, from- 

Fig. 7. Relationship of predicted and real values of methane source rate obtained from (a) IME and (b) MethaNet.  

Table 5 
Performance of state-of-the-art methane quantification approaches compared to 
fine-tuned EfficientNet-V2L.  

Method RMSE (kg h− 1) MAPE (%) R (%) 

IME 3388 13.97 90.69 
MethaNet 3341 16.03 88.73 
EfficientNet-V2L (fine-tuned) 2101 10.05 95.70  

Fig. 8. Performance of deep model with different sampling ratios during the 
training stage. 
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scratch methods reach noticeably improved performance. Comparing 
deep learning models, ResNet-50 shows better performance with the 
transfer learning strategy. Whereas VGG-19 obtains more precise 
methane source rates for from-scratch strategy. Among all obtained deep 
networks, the fine-tuned EfficientNet-V2L has the highest accuracy with 
2101 kg h− 1 RMSE, 10.05% MAPE, and 95.70% correlation (R). 

5.2. Comparison with other methods 

In comparison to existing approaches, the proposed deep learning 
method outperformed traditional techniques (IME and MethaNet) for 
methane source rate quantification. The results of the study suggest that 
the proposed deep learning method can provide more accurate and 
precise methane source rate estimates. For lower source rates, the IME 
estimations are close to the real values; however, as the flux rate in-
creases, they become sparse and the inaccuracy rises (Fig. 7 (a)). The 
reason for the increased inaccuracy in IME method with higher flux rates 
is due to the quantification error, which is often expressed as a specific 
ratio or percentage of the source rate. This error is a product of un-
certainties in methane retrieval, wind speed, and the IME model (Varon 
et al., 2019). Consequently, the quantification error rises with the source 
rate. In contrast, deep learning-based approaches produce a consistent 
amount of error across different source rates, as opposed to a propor-
tional variation which is commonly observed in traditional methods 
(IME and CSF). 

Accordingly, it is concluded that the proposed deep learning ap-
proaches provide higher accuracy compared to the widely accepted IME 
approach for methane quantification, particularly at high source rates, 
and it also eliminates the necessity for wind speed data. MethaNet 
predictions are generally sparse over all flux rates (Fig. 7 (b)) in com-
parison with the proposed approach (Fig. 6 (f)). 

5.3. Limitations 

While the proposed approach has shown promising results in esti-
mating the methane plume source rate from Sentinel-2 satellite data, 
there are limitations to be considered. In particular, the proposed 
method is limited to the specified range of source rates (5000 kg h− 1 to 
30,000 kg h− 1) and may not work effectively for anomalous point 
sources outside of this range. 

Although one-time training of the deep learning models is adequate 
to estimate methane plume source rate of unseen and new point sources, 
the proposed approach is based on deep learning models and requires 
sufficient time for training the models at first. Moreover, producing 
benchmark data for the supervised learning method can also be time- 
consuming. Although existing models, such as IME and CSF, are faster 
than the proposed approach, they still require the methane plume 
simulation step to determine effective wind speed parameters. Thus, 
even existing methods require a simulation step. 

Fig. 9. Methane column concentration images obtained from Sentinel-2 data over four different platforms at the Permian Basin (first row), Hassi Messaoud (second 
row), Korpezhe (1) (third row), and Korpezhe (2) (fourth and fifth rows). 
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5.4. Applicability for other satellites 

The proposed method has shown promising results in estimating 
methane source rates from Sentinel-2 data using deep learning tech-
niques. Previous studies have utilized machine and deep learning 
models to estimate methane emissions from different satellite sensors 
such as AVIRIS (Jongaramrungruang et al., 2022), PRISMA (Joyce et al., 
2022), and TROPOMI (Schuit et al., 2023). These studies have shown 
great potential for machine and deep learning models in association 
with different satellite sensors to monitor methane point sources. This 
suggests that the proposed method could also be applicable for deter-
mining methane source rates using other satellite datasets. However, 
applying the proposed method to other satellite sensors would require 
modifications in all steps, including plume simulation, real background 
noise production, benchmark dataset generation, and training deep 
learning models. Consequently, while the proposed method has 
demonstrated excellent results in estimating methane source rates from 
Sentinel-2 data, its applicability to other satellite sensors remains to be 

explored. Future studies could investigate the performance of the pro-
posed method on other satellite sensors capable of detecting methane 
plumes by modifying all the necessary steps. 

6. Conclusion 

In this study, we produced an enriched benchmark dataset of 
Sentinel-2 methane plumes that can be utilized in future experiments 
aiming to monitor large point sources of methane captured by Sentinel- 
2, given its limitations in detecting diffuse or area emitters. The capa-
bility of several well-known deep learning models for automatic esti-
mation of methane flux rate was investigated leveraging this dataset. 
The benchmark dataset was generated by aggregating simulated 
methane plumes and real background noise to imitate the real condition 
of Sentinel-2 plume images. 

The potential of state-of-the-art deep learning architectures to esti-
mate methane flux rate from Sentinel-2 images was evaluated. We used 
VGG-19, ResNet-50, Inception-v3, DenseNet-121, Swin-T, and 

Fig. 10. Methane plumes and source rates quantified using IME and fine-tuned EfficientNet-V2L for real Sentinel-2 samples of (a) Permian Basin (b) Hassi Messaoud, 
(c) Korpezhe (1) and (d) Korpezhe (2). 
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EfficientNet-V2L in several experiments and modified them for the 
regression tasks. Three different learning strategies, namely learning 
from scratch, transfer learning with fine-tuning, and transfer learning 
without fine-tuning, were examined for each network. The results 
indicated poor performance of the transfer learning with frozen base 
layers (without fine-tuning) compared to the other two approaches. 
Among all examined architectures with different strategies, the fine- 
tuned EfficientNet-V2L was superior and resulted in 2101 kg h− 1 

RMSE, 10.05% MAPE, and 95.70% Pearson R value. 
The investigated deep learning approaches were further compared to 

conventional methods for methane flux rate quantification, including 
IME and a deep convolutional network called MethaNet. The best deep 
model in the current study (fine-tuned EfficientNet-V2L) surpasses both 
of these well-known quantification approaches by more than 1200 kg 
h− 1 in RMSE, 3% in MAPE, and 5% R. In addition, the proposed algo-
rithm, unlike IME, eliminates the necessity for auxiliary wind speed 
data, resulting in an automatic approach with a higher precision. More 
importantly, this study establishes a valuable benchmark dataset for 
Sentinel-2 methane plumes, facilitating future research on monitoring 
large point sources of methane using this satellite imagery. Moving 
forward, considering the limitations of Sentinel-2 in detecting diffuse 
emitters, future work could focus on developing hybrid models that 
combine Sentinel-2 data with other satellite sensors or ground-based 
measurements to enable comprehensive monitoring of methane emis-
sions across diverse source types. Additionally, investigations into the 
transferability and generalization of the trained models to different 
geographic regions or varying environmental conditions would be 
valuable for expanding the applicability and practicality of this 
approach. 
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