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ABSTRACT: Satellite observations of atmospheric methane plumes offer a means for
global mapping of methane point sources. Here we use the GHGSat-D satellite
instrument with 50 m effective spatial resolution and 9−18% single-pass column
precision to quantify mean source rates for three coal mine vents (San Juan, United
States; Appin, Australia; and Bulianta, China) over a two-year period (2016−2018).
This involves averaging wind-rotated observations from 14 to 24 overpasses to achieve
satisfactory signal-to-noise. Our wind rotation method optimizes the wind direction
information for individual plumes to account for error in meteorological databases. We
derive source rates from the time-averaged plumes using integrated mass enhancement
(IME) and cross-sectional flux (CSF) methods calibrated with large eddy simulations.
We find time-averaged source rates ranging from 2320 to 5850 kg h−1 for the three coal
mine vents, with 40−45% precision (1σ), and generally consistent with previous
estimates. The IME and CSF methods agree within 15%. Our results demonstrate the
potential of space-based monitoring for annual reporting of methane emissions from point sources and suggest that future satellite
instruments with similar pixel resolution but better precision should be able to constrain a wide range of point sources.

■ INTRODUCTION
Methane is a powerful greenhouse gas with large anthro-
pogenic sources. It has contributed 1.0 W m−2 to radiative
forcing since preindustrial times on an emission basis.1

Underground coal mines are estimated to account for ∼10%
of global anthropogenic methane emissions.2 Their ventilation
shafts are among the largest individual point sources of
methane,3 but individual source estimates are highly
uncertain.4 Remote sensing of atmospheric methane by solar
backscatter in the shortwave infrared can be effective for
quantifying point sources.5,6 Krings et al. (2013)7 used aircraft
remote-sensing measurements to quantify methane emissions
from coal mine vents in Germany. Frankenberg et al. (2016)4

observed coal mine plumes in the Four Corners region of the
Southwest United States using the airborne AVIRIS-NG
spectrometer. Global-observing satellite instruments have
demonstrated the capability to characterize methane emissions
on regional scales8−10 and from anomalously large sources11

but are limited by relatively coarse imaging resolution (∼10
km). The GHGSat-D satellite instrument overcomes this
limitation by conducting high-resolution observations of point
sources over targeted domains.12 Here we demonstrate the
capability of GHGSat-D to observe methane plumes from
individual coal mine vents and infer time-averaged source rates.
GHGSat-D was launched in June 2016 as demonstration for

a future constellation of small satellites to monitor individual
methane point sources from space.13,14 Single-pass GHGSat-D
observations have revealed anomalously high-emitting facilities
in oil/gas fields with source rates exceeding 10,000 kg h−1.12

The largest methane point sources under normal operating
conditions are the vents of large underground coal mines,
typically in the range of 1000−10,000 kg h−1.4,5,7,15 Here we
show that time averaging of wind-rotated GHGSat-D
observations can enable detection and quantification of
methane emissions from individual coal mine vents, adapting
an approach previously applied to satellite observations of
point sources for CO,16 SO2,

17,18 NO2,
19−21 and NH3,

22,23 but
including significant innovation to account for large errors and
limited number of observations. Time averaging is necessary
here to achieve satisfactory signal-to-noise, but it also has the
advantage of smoothing over source variability and providing
the annual emission estimates most relevant for national
emission reporting and global methane budget analyses.

■ MATERIALS AND METHODS

GHGSat-D Observations. GHGSat-D uses a miniature
Fabry−Perot interferometer with a spectral bandpass of 1630−
1675 nm.12,24 The measurements are made at 50 m effective
pixel resolution over ∼12 × 12 km2 targeted domains.
Methane column concentrations are retrieved from the
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resulting spectra using a 100-layer, clear-sky radiative transfer
model in an inverse modelling framework, following Rodgers
(2000)25 and as described by Varon et al. (2019).12 The
inversion retrieves the total column concentrations Ω(x,y)
[mol m−2] of methane across the scene, based on HITRAN
absorption line spectra26 and U.S. Standard Atmosphere
vertical profiles.27 The column mass enhancement ΔΩ(x,y)
= Ω(x,y) − Ωb then characterizes the plume relative to the
local background column concentration Ωb [mol m−2], which
is inferred from a scene-wide methane column retrieval.12 The
inversion also retrieves albedo, CO2, and water vapor. The
work presented here includes a correction of retrieval errors
from aliased surface properties and other measurement
parameters.24

GHGSat-D has an average revisit time of about two weeks
depending on latitude and requires clear skies for successful
observation. Since its launch in June 2016, it has repeatedly
targeted the vents of three underground coal mines: the San
Juan mine in New Mexico, USA; the Appin mine in New
South Wales, Australia; and the Bulianta mine in Inner
Mongolia, China. These coal mines were selected for their
large coal production rates and/or previous reports of large
methane emissions.4,15,28,29 Here, we examine GHGSat-D
observations of the coal mine vents taken between August
2016 and December 2018, totaling 14−24 cloud-free
observations per mine (see Table 1). The Appin mine was
closed on 28 June 2017 because of safety concerns and
partially reopened on 13 October 2017. The four cloud-free
observations made during this extended closure may reflect
lower emissions than under normal operating conditions.
Several other shorter closures occurred at Appin during the
observation period, but these did not overlap with our
measurements.
Figure 1 shows methane column enhancements from

individual GHGSat-D scenes centered on the San Juan coal
mine vent. The geolocation of the retrieved column enhance-
ments is accurate to within ∼30 m.24 These scenes were
chosen for their detectable plumes but also illustrate GHGSat-
D retrieval artefacts resulting primarily from striping noise,

surface reflectance variability, and stray light. Some artefacts
are similar in magnitude to the plumes, which highlights the
importance of prior knowledge of source location. Column
precisions for our San Juan, Appin, and Bulianta observations
are estimated at 9, 18, and 12% of background, respectively,
based on the standard deviations of nonplume column
enhancements across the scenes. Most scenes do not feature
readily detectable plumes, which motivates our time-averaging
analysis.

Wind Data for Time-Averaging. Time averaging of
plume observations to improve signal-to-noise and infer
emissions from point sources requires knowledge of wind
speed and direction for the individual scenes.16−23,30 Wind
information can come from local measurements, from
assimilated meteorological databases, or directly from the
plume observations themselves.31 The appropriate wind-
averaging time for an individual scene depends on the lifetime

Table 1. Methane Source Rates from Coal Mine Vents Retrieved with GHGSat-D

San Juan vent Appin vent Bulianta vent

Location
Country United States Australia China
State/region New Mexico New South Wales Inner Mongolia
Latitude 36.7928°N 34.1815°S 39.3835°N
Longitude 108.3890°W 150.7197°E 110.0951°E

Source Retrieval Metadata
Averaging period Aug 2016−Nov 2018 Nov 2016−Oct 2018 Aug 2016−Dec 2018
Number of clear-sky observations 24 17 14
Single-pass error level 9% 18% 12%
10 m wind speed (m s−1)a 3.0 (0.5, 8.0) 2.2 (0.7, 3.8) 3.6 (0.9, 9)

Source Rate Estimates (kg h−1)b

IME method 2320 ± 1050 5850 ± 2360 2410 ± 1000
CSF method 2390 ± 1070 4980 ± 2100 2450 ± 970
Previous estimates 360−2800c, 2585d, 1446e 5200f, 10,800−12,600g 170h

aMean (minimum, maximum) hourly wind speed for the ensemble of GHGSat-D observations, obtained from the GEOS-FP database. bReported
source rates are for time-averaged plumes after wind direction optimization (Figure 4) and using either the IME or CSF method. cRange from
several days of aircraft remote-sensing measurements in April 2015.4 dAnnual mean estimate for 2017 from quarterly in situ measurements of flow
rate and methane concentration.40 eMean estimate from five days of in situ aircraft mass-balance measurements.15 fEstimate by Cardno (2009)41

based on annual coal production activity data and emission factors (converted from kt CO2e a
−1). gEstimate based on ventilation flow rate and air

stream methane concentration from vent design.29 hEstimate from in situ measurements during a weeks-long safety evaluation in 2011.28

Figure 1. Instantaneous plumes observed by GHGSat-D over the San
Juan mine in New Mexico on (a) November 1st, 2017, and (b)
September 18th, 2018. The white “x” symbols mark the location of
the coal mine vent (36.7928°N, 108.3890°W) and the white arrows
show the instantaneous local wind direction inferred from the
orientation of the plumes (see the “Wind Data for Time Averaging”
section).
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of the detectable plume before turbulent diffusion dilutes it to
below detectable levels. It ranges from ∼5 min for a typical
plume (<1 km) to ∼1 h for a very large plume several km in
extent.32 Short averaging times produce higher source rate
retrieval errors because of added uncertainty from subhourly
wind variability. Coal mine vent plumes as observed by
GHGSat-D tend to be <1 km in scale (Figure 1) and are
therefore best interpreted with a short averaging time of about
5 min.
Our algorithm to relate plume concentrations to emissions

uses 10 m wind information.32 We take this information from
two hourly meteorological databases: (1) the NASA Goddard
Earth Observing SystemFast Processing (GEOS-FP) rean-
alysis product with full global coverage at 0.25° × 0.3125°
resolution33 and (2) the DarkSky online weather application
programming interface with partial coverage.34 Comparison
with one month of daytime (15:00−21:00 UTC) wind
measurements from 10 U.S. airports in the MesoWest
database35 suggests that GEOS-FP has more precise wind
speed data than DarkSky, while DarkSky has more precise
wind direction data. Error standard deviations on hourly
average wind speed and direction from GEOS-FP are 1.5 m s−1

and 49° relative to the airport measurements, compared to 2.2
m s−1 and 37° for DarkSky. We therefore use GEOS-FP wind
speed and direction as default, but substitute DarkSky wind
direction where available. DarkSky winds are available for
nearly all our observations of the San Juan and Appin mines,
but not for Bulianta.
Figure 2 shows the wind direction error statistics when using

meteorological reanalysis data to infer local wind direction as
referenced by the MesoWest database. The error depends
strongly on wind speed, with larger errors for low wind speeds,
as would be expected from turbulence. Uncertainty in the
mean hourly wind in the meteorological databases (Figure 2a)
is calculated as the standard deviation of the residuals between
hourly GEOS-FP (or DarkSky) and MesoWest wind
directions. Wind direction errors for both GEOS-FP and
DarkSky are binned by GEOS-FP wind speed, which is the
wind speed we use to estimate source rates (see the
“Estimating Source Rates” section). This error is compounded
for small plumes by the error in inferring the more appropriate
5 min average wind (Figure 2b), in which case the two errors
are added in quadrature. We calculate this additional error as

the standard deviation of the residuals between the hourly and
5 min MesoWest wind directions. For observations with strong
instantaneous plumes detectable by eye (Figure 1), we
estimate wind direction directly from the plume axis, which
we define from a weighted mean of pixel coordinates with the
plume column concentrations as weights. The wind direction
error in that case is set to 5° to account for error in the
retrieved methane columns.
For a given point source, a time-averaged plume over the

GHGSat-D record can be constructed from the methane
column enhancements ΔΩi(x,y) [mol m−2] observed over the
source domain (x, y) on individual days i = 1...N. This is done
by (1) georeferencing the observations and aligning them by
linear interpolation to the grid of the first observation, (2)
rotating each observation around the known source location by
the local wind direction θi, and (3) computing perpixel means
over the rotated observations remapped to the common grid.
The alignment and rotation steps require precise knowledge of
the source location at the scale of the observations. The
rotation step may introduce negative bias from wind direction
uncertainty, as a misrotated plume may be lost in the noisy
background of the time-averaged observation. We account for
this bias through our source rate retrieval method, as described
in the “Estimating Source Rates” section below.

Optimizing Wind Directions. Wind direction errors in
the meteorological databases are relatively large, particularly
under low wind conditions (Figure 2). Here, we correct the
wind directions used for plume rotation in order to maximize
concentrations in the time-averaged plume while minimizing
deviation from prior wind estimates. Specifically, we maximize
the joint Gaussian probability distribution P(θ) given by

P
M M

Slog ( )
( ( ) )

( ) ( )a a
max

2

2
T

a
1θ

θ
θ θ θ θ

δ
= −

−
− − −−

(1)

by minimizing −log P(θ). Here, θ is a wind direction vector
whose elements θi, i = 1...N, are the wind directions used to
rotate N GHGSat-D observations; θa is a vector of prior wind
direction estimates for the observations, from GEOS-FP and
DarkSky; Sa is the (diagonal) prior error covariance matrix
describing uncertainty in the prior wind direction, which
depends on wind speed, plume lifetime (here, 5 min), and
whether the prior is drawn from GEOS-FP, DarkSky, or the

Figure 2. Error in estimating 10 m wind direction from the GEOS-FP and DarkSky datasets. (a) Error standard deviations for GEOS-FP and
DarkSky hourly average wind direction relative to one month of measurements from 10 U.S. airports (ABQ, ATL, BOS, DFW, LAX, MCI, MSP,
PDX, PHL, and PHX) in the MesoWest database, binned by GEOS-FP wind speed. The airport measurements are for daytime June 2017 (15:00−
21:00 UTC). (b) Additional uncertainty for estimating 5 min wind direction from 1 h averages, based on 5 min wind direction variability in the
MesoWest data.
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plume itself; M(θ) [mol] is the total methane mass [integrated
mass enhancement (IME)] in a wedge-shaped mask placed
downwind of the source after time-averaging with a set of wind
directions θ (see below); Mmax [mol] is the maximum possible
value of M(θ) for the set of observations when no constraints
are placed on θ; and δ2 [mol2] is the error variance in M(θ)
due to GHGSat-D measurement noise. We minimize −log
P(θ) numerically using the Nelder−Mead simplex algo-
rithm.36,37

We rotate individual observations by their wind direction
such that the time-averaged rotated wind is by convention
from the north. M(θ) is computed at each iteration of the
optimization procedure as the IME over a simple wedge-
shaped mask extending 500 m south and ±15° of south. The
IME is the sum of column enhancements ΔΩ(x,y) over the
mask, multiplied by the pixel area. We then compute Mmax by
rotating the mask around the source location by 360° in each
observation, recording for each the maximum IME, and
averaging over all observations. To calculate δ, we perform
time averaging using our prior wind directions and then
compute the IME within the wedge-shaped mask when placed
at 100 random nonplume locations across the time-averaged
domain; the standard deviation of these results gives δ.
Optimizing wind directions to enhance plume mass

introduces a risk of aliasing positive measurement artefacts
into the time-averaged plume. This problem is mitigated by the
prior wind direction term in eq 1, which penalizes the
optimizer for straying too far from reanalysis wind direction
estimates. To assess the remaining risk, we conduct a series of
null tests, optimizing winds for our observations of the San
Juan mine with the wind-rotated average centered on four false
source locations (Figure S1). The results indicate a minor
effect and are described in the Supporting Information.
Defining Plume Boundaries. Inferring source rates from

plume observations requires a mask that distinguishes plume
pixels from the background. Varon et al. (2018)32 suggested a
t-test procedure for isolating plumes from normally distributed
measurement noise, but that procedure’s performance is
limited here by systematic errors in the time-averaged
observations. Instead, we isolate the plumes by applying an
enhancement threshold at the 98th percentile of ΔΩ(x,y) over
the time-averaged domain. This defines a binary threshold
mask for the scene. To delete random classification errors and
reduce loss of plume enhancements at mask edges because of
thresholding, we smooth the masks with a 150 × 150 m2

median filter, which replaces each pixel’s value with the median
of its 150 × 150 m2 neighborhood, followed by a Gaussian
filter with a standard deviation of 50 m. A final threshold is
applied to produce a smooth, binary plume mask. Wind
rotation and time averaging smooth out most of the
observation artefacts such as those seen in Figure 1, but
some still appear in the mask. For the purpose of inferring
point source rates, we only consider the continuous portion of
the mask originating from the source location.
The plume-masking scheme can strongly influence source

rate retrieval results because it determines which measurement
pixels are included in the analysis and which are not. The
retrieval must therefore be calibrated according to the chosen
scheme. We discuss this process in the next section.
Estimating Source Rates. We estimate source rates for

our time-averaged plumes using two different methods: the
IME method and the cross-sectional flux (CSF) method.32 The
IME method relates the source rate Q [mol s−1] to the

detectable plume mass IME [mol] in terms of an effective wind
speed Ueff,IME [m s−1] and plume size L [m]:

Q
U

L

U

L
x y AIME ( , )

j

n

j j j
eff,IME eff,IME

1

∑= = ΔΩ
= (2)

where x y( , )j jΔΩ , j = 1...n, is the time-averaged column

concentration of the jth plume pixel with coordinates (xj,yj)
and area Aj and the summation is over the n pixels within the
continuous plume mask originating from the source location.
The plume size L is defined following Varon et al. (2018)32 as
the square root of the plume mask’s area. The effective wind
speed Ueff,IME is an operational parameter that is inferred from
the local 10 m wind speed U10 in a manner that depends on the
definitions of the plume mask and size. We discuss the Ueff =
f(U10) relationship below.
The CSF method originally introduced by White (1976)38

and adapted to column observations by Krings et al. (2011,
2013)7,39 and Varon et al. (2018)32 relates Q to a cross-plume
concentration integral [mol m−1] and a different effective wind
speed Ueff,CSF than in the IME method:

Q U x y y( , ) d
a

b

eff,CSF∫= ΔΩ
(3)

Here, the x-axis is defined by the wind direction (northerly
by convention for our time-averaged plumes) and the y-axis is
perpendicular to the wind direction. The integral is computed
between the plume boundaries [a, b] defined by the plume
mask, and this computation can be done at multiple downwind
distances x to improve estimation of Q through averaging.
Here, we repeat the calculation at pixel-width intervals across
the full extent of the detectable plume. The effective wind
speeds in the IME and CSF methods are operational
parameters that can be related to the local 10 m wind speed
U10. Varon et al. (2018)32 calibrated Ueff = f(U10) relationships
for instantaneous plumes generated by large eddy simulation
(LES), but the relationships may be different here for two
reasons. First, we use a different definition of the plume mask,
as described in the previous section. This affects the
dependence of IME and plume transects on Q. Second, the
dependences of IME (or plume transects) on wind speed and
source rate may be different for time-averaged compared to
instantaneous plumes.
Here, we calibrate new Ueff = f(U10) relationships for the

IME and CSF methods, customized to our observing
conditions and plume mask. To do this, we repeat the LES
plume analysis of Varon et al. (2018)32 on the same ensemble
of simulations, but with time-averaged rather than instanta-
neous plumes. The LES ensemble comprises fifteen 5 h
simulations with a range of wind speeds and boundary layer
depths. We calibrate Ueff = f(U10) relationships for each coal
mine independently because for each we have a different
number of observations and level of background noise. We use
the following procedure. First, a number of LES plume
snapshots are randomly drawn from the ensemble (24 for San
Juan, 17 for Appin, and 14 for Bulianta). The source rate for
the plumes is set to a random (constant) value between 1000
and 6000 kg h−1, typical for large coal mine vent emissions.5

Each snapshot is rotated by a random wind direction, and the 5
min average value of U10 at the source location is recorded. We
corrupt the plume snapshots with normally distributed,
spatially uncorrelated noise of mean zero and standard
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deviation dependent on the observation conditions of each
mine (9, 18, or 12% of a 1850 ppb background). We then
follow the wind direction optimization procedure outlined
above (eq 1) to recover the LES plume wind directions from
the randomly corrupted prior estimates, and assemble in this
manner a time-averaged plume pseudo-observation. After
constructing the plume mask and calculating IME, L, and
the mean transect for the time-averaged plume, we use eqs 2
and 3 to compute Ueff based on prior knowledge of Q.
Meanwhile, we compute U10 for the time-averaged observation

as the mean of the 5 min averages across aggregated plumes.
We repeat this procedure 100 times on a set of LES plumes
comprising 80% of the ensemble (∼2900 plume snapshots),
simulating 100 time-averaged plumes with different mean
source rates. We then derive the Ueff = f(U10) relationships by
least squares fitting. Finally, to quantify source rate retrieval
error, we evaluate these relationships on time-averaged plumes
constructed from the remaining 20% of the LES plume
ensemble (see the Supporting Information).

Figure 3. Effective wind speeds Ueff for retrieving time-averaged methane source rates by the IME and CSF methods (eqs 2 and 3) as a function of
the time-averaged 10 m wind speed U10. The Ueff = f(U10) relationships are derived from LESs of instantaneous methane plumes, with time
averaging and wind rotation corresponding to our measurement conditions for (a) San Juan, (b) Appin, and (c) Bulianta. Each point represents a
time-averaged plume assembled from LES instantaneous plumes, with the level of background noise and number of observations adapted to the
mine of interest (see Table 1). The functions are fit by robust least squares (see text).

Figure 4. Time-averaged methane plumes from the San Juan, Appin, and Bulianta coal mine vents, as observed by GHGSat-D from August 2016
through December 2018. The single-pass observations have been rotated to a northerly wind direction using (a−c) local wind data from GEOS-FP
and DarkSky and (d−f) optimized wind directions with GEOS-FP and DarkSky winds as prior estimates (see the “Optimizing Wind Directions”
section). The methane column enhancements are overlaid on Google Earth Pro imagery after thresholding and smoothing the plume masks with
median and Gaussian filters (see the “Defining Plume Boundaries” section). The white markers show the location of the coal mine vent in the
center of each scene.
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Figure 3 shows our derived Ueff = f(U10) relationships for the
three coal mines. We find that linear relationships without
intercepts capture the behavior well in all cases, and that the
slopes are similar despite differences in the number of
observations aggregated, level of measurement noise, and
wind direction prior error variance. The winds are fit by robust
linear regression, which assigns less weight to outlier points, to
mitigate the considerable scatter in Ueff for larger values of U10.
Plume enhancements in these outlier cases are very low and
difficult to detect, even after wind direction optimization. Ueff =
f(U10) slopes for the CSF method are similar to the results of
Varon et al. (2018),32 but slopes for the IME method are
significantly different, which would reflect different interde-
pendences between plume shape, mass, and ventilation time
for time-averaged plumes compared to instantaneous plumes.

■ RESULTS AND DISCUSSION

Time-Averaged Plumes. Figure 4 shows our time-
averaged rotated observations of the San Juan, Appin, and
Bulianta coal mine vents, both before and after wind direction
optimization. The plumes are oriented to the south of the
source location by convention and are separated from the
noisy background by thresholding and smoothing as discussed
in the “Defining Plume Boundaries” section. Enhancements
above the threshold but not directly downwind of the source
location are ignored as retrieval artefacts. We can make this
distinction because wind-rotated time averaging with variable
wind direction destroys spatial continuity between observa-
tions. Time-averaged enhancements lying outside of the
downwind area should be classified as artefacts unless they
are identified as plausible plumes in single-pass observations,
particularly under low-wind conditions in which plumes may
have highly complex shapes, which is not the case here.
Before optimizing wind direction to improve plume-to-noise

contrast, the San Juan and Appin mine vents show strong time-
averaged plumes with respective peak enhancements 7 and
17% above background. The Bulianta mine vent shows peak
downwind enhancements 8% above background, but a less
distinctive plume shape. One possible explanation for this is
that the Bulianta vent is at the base of a hill, leading to large
and potentially systematic wind direction error, in contrast to
the San Juan and Appin vents, which are in flat terrain.
Optimizing wind direction amplifies the plumes’ mean
enhancements by 11−13% and produces a more elongated
plume shape for the Bulianta coal mine, with peak methane
enhancements more than 10% above background. Peak plume
enhancements do not generally appear at the source location,
contrary to what one would expect. This could be because of
systematic retrieval errors over the vent location (e.g. because
of surface reflectance variability or aerosol particles in the
plume). Source pixel enhancements may also be lower than
downwind pixel enhancements because the plume is present in
only part of the source pixel along the wind direction. We
expect this effect to be weaker at fine spatial scales than
previously documented for the TROPOMI satellite instru-
ment’s kilometer-scale pixels.11 Finally, intrapixel variations in
methane concentration can produce errors from nonlinearity in
the column retrieval algorithm. Missing large enhancements
near the vent could lead to a low bias in IME emission rate
estimates, but would have a smaller effect on the CSF method,
where each cross-plume integral downwind of the source
independently approximates the emissions.

Time-Averaged Source Rates. Table 1 shows our time-
averaged source rate estimates for the San Juan, Appin, and
Bulianta mines determined from the wind-optimized plumes.
Estimates from the IME and CSF methods agree within their
error standard deviations, which is a first check that our
effective wind speed functions are well-calibrated. We estimate
mean emissions of 2320 ± 1050 kg h−1 for the San Juan vent,
5850 ± 2360 kg h−1 for the Appin vent, and 2410 ± 1000 kg
h−1 for the Bulianta vent using the IME method. Using the
CSF method, the estimates are 2−3% higher for San Juan and
Bulianta, but 15% lower for Appin, contradicting the prospect
of low bias in the IME method. The reported uncertainties
(1σ) are 40−45% and incorporate wind speed error, error in
the IME and CSF models (including wind direction error and
uncertainty in the effective wind speed fits of Figure 3),
correlated random measurement noise in the retrieved
columns, and error from source variability. We assess wind
speed error by comparing GEOS-FP and MesoWest wind data,
model error by evaluating source rate retrievals on a test set of
synthetic time-averaged plumes, and measurement error by
randomly sampling GHGSat-D background noise. We estimate
the error from source variability using daily ground-based
emission estimates for three coal mine ventilation shafts in
China from 2007 to 2009, provided to us by Raven Ridge
Resources, Inc. (Figure S2). We add these errors in quadrature
to obtain our final error estimates. A detailed error analysis is
presented in the Supporting Information.
Also shown in Table 1 are previous emission estimates for

each of the coal mine vents, all from much smaller samples
and/or durations. Frankenberg et al. (2016)4 estimated
emissions of 360−2800 kg h−1 for the San Juan vent based
on several days of aircraft remote-sensing measurements, and
Smith et al. (2017)15 inferred mean emissions of 1446 kg h−1

from five days of aircraft mass-balance measurements during
the same period. Quarterly in situ measurements of the vent
flow rate and methane concentration reported to the United
States Environmental Protection Agency (EPA) in 2017 put
emissions from the San Juan vent at 2585 kg h−1 averaged over
the year,40 in remarkable agreement with our estimate. Ong et
al. (2017)29 approximated emissions of 10,800−12,600 kg h−1

from the Appin mine, based on estimates of the vent flow rate
and air stream methane concentration. Cardno (2009)41 used
coal production activity data and Australian National Green-
house Accounts (NGA) emission factors to estimate
ventilation shaft methane emissions of ∼5200 kg h−1 for the
Appin mine in a two longwall mining formation. We are aware
of only one emission estimate for the Bulianta mine: 170 kg
h−1, reported by the Chinese State Administration for Coal
Mine Safety (SACMS).28 This estimate is based on ground
measurements made during a 2−3 month safety evaluation
performed in 2011 and is much lower than our result.
In summary, our results demonstrate the capability of space-

based observations of methane plumes to quantify point source
rates from high-emitting facilities under apparently normal
operating conditions. The GHGSat-D demonstration satellite
instrument used in our work has fine spatial resolution (50 m)
but coarse single-pass column retrieval precision (9−18%) and
large retrieval artefacts. Nevertheless, we were able to quantify
time-averaged methane emissions from large coal mine vents
(>1000 kg h−1) with ∼40% uncertainty. This involved
averaging 14−24 observations per target over a 2 year period,
using an optimized wind rotation procedure. Our time-
averaged result for the San Juan coal mine vent was in close
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agreement with the annual emission reported to the U.S. EPA.
Future methane-observing satellite instruments with similar
spatial resolution but improved precision, including GHGSat-
C1 to launch in 202042 and the next generation of orbiting
hyperspectral surface imagers,43 will likely improve our ability
to detect methane plumes from individual facilities and infer
source rates. Quantifying sources down to 100 kg h−1 would
account for more than 90% of emissions from point sources in
the U.S. GHGRP.5 Such thresholds for detection and
quantification will continue to shrink as revisit rates for time
averaging increase with the number of instruments in orbit.30

Repeated measurements from satellites may be particularly
useful for estimating annual emissions for facility-level
reporting purposes.
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